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Abstract—In this paper, we study a data caching problem in the cloud environment, where multiple frequently co-utilised data items
could be packed as a single item being transferred to serve a sequence of data requests dynamically with reduced cost. To this end, we
propose an online algorithm with respect to a homogeneous cost model, called PackCache, that can leverage the FP-Tree technique to
mine those frequently co-utilised data items for packing whereby the incoming requests could be cost-effectively served online by
exploiting the concept of anticipatory caching. We show the algorithm is 2/α competitive, reaching the lower bound of the competitive
ratio for any deterministic online algorithm on the studied caching problem, and also time and space efficient to serve the requests.
Finally, we evaluate the performance of the algorithm via experimental studies to show its actual cost-effectiveness and scalability.
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1 INTRODUCTION

A S the complexity of applications keeps increasing, var-
ious tasks in real life may require more than one data

items to collaboratively complete the task. For instance,
during text preprocessing [1], a tokenisation model and
a token dictionary may be required together for Chinese
sentence analysis. Hence, given that data items are some-
times correlated in accesses, they thus can be packed to
serve the requests via caching at reduced cost. As a way to
reduce communication overhead and minimise response de-
lay for data accesses in the context of cloud computing, data
caching is playing an essential role in managing data in such
applications. Despite of the co-utilisation pattern of data
items, past works seldom transfer data items via caching
in a packed manner [2, 3], especially in online scenarios,
where data layout and access optimisation is infeasible due
to the online nature. Hence, it hinders the cost-efficiency of
applications in the cloud environment when serving data
requests.

Motivated by the observation that data-item co-
utilisation is frequent in the cloud environment, and the
cost benefit can be brought by the packing mechanism, an
offline caching algorithm, which combines a greedy strategy
and a dynamic programming technique to serve requests in
a packable manner, was proposed to minimise the service
cost [4]. However, the offline scenario is not always realistic.
On the other hand, the Jaccard Similarity-based (JS-based)
method used in [4] might also perform unstably in online
settings to mine the frequent co-utilised data items [5], thus
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crippling the deployments of the algorithm in practice.
In this paper we address these issues by presenting an

online packable data caching algorithm, called PackCache,
which utilises the FP-Tree to discover frequently co-utilised
data items as it performs more stable and generates less
variations [5] than the JS-based method in online settings.
Additionally, the algorithm leverages the concept of antic-
ipatory caching [6] to serve the requests and maintain the
data caches in an online fashion. To our best knowledge, the
work in this paper is among the first to tackle the caching
problem in an online packable manner.

The PackCache algorithm is designed by following the
setting adopted in our previous studies [2, 7, 3], where a
homogeneous cost model is employed [8] — for each cache
server, the storage cost is fixed and for each pair of servers,
the communication costs are also identical. Based on this
model, we further show that the PackCache algorithm is 2/α
competitive, where α is the discount factor, i.e., the cost
saving ratio achieved by the packing mechanism. Moreover,
we also prove that 2/α is the lower bound of the competitive
ratio of the packable caching problem for any deterministic
online algorithm, which verifies that the proposed algorithm
is tight in terms of competitive performance. Finally, the
PackCache algorithm is both time and space efficient in
serving a request in O(1) time and O(n2) space, where n
is the length of the request sequence.

To evaluate its actual performance in reality, we also im-
plement the PackCache algorithm and conduct experiments
to show its cost-effectiveness and scalability. In summary,
we make the following contributions in this paper:

• We study a cost-driven data caching problem with
packable serving mechanism under the homoge-
neous cost model and propose a cost-efficient Pack-
Cache algorithm that utilises the FP-Tree to discover
frequently co-utilised data items and adopt the antic-
ipatory caching mechanism to serve requests.

• We show that the PackCache algorithm achieves a
competitive ratio of 2/α, which is also shown to
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be the lower bound of the online packable caching
problem for any deterministic online algorithm.

• We implement the PackCache algorithm and evaluate
its performance in practice. The results show that
compare with its individually-served counterpart,
the PackCache algorithm is cost effective and scalable,
i.e., under α value of 0.8 and 0.6, a cost reduction of
5% and 10.7% can be achieved.

The rest of the paper is organised as follows: Section 2
presents some related works and compares them with ours
to demonstrate our research opportunities. After that, we
present our model and the detailed problem formulation
in Section 3. The PackCache algorithm, its competitive ratio
analysis and complexity analysis are presented in Section 4.
Experimental setups and results are illustrated in Section 5.
The last section concludes the paper.

2 RELATED WORK

The caching problems can be divided into online case and
offline case distinguished by different ways to receive re-
quests. In the offline case, the full knowledge about requests
is available in advance, while the online case knows nothing
about the future requests sequence. In the offline setting
and a QoS perspective, Zhang et al., [9] studied the delay-
optimal cooperative caching in the edge environment and
proposed a greedy caching placement algorithm with an
approximation ratio of (1−1/e) in linear time. By following
a similar idea, Zhang et al., [10] introduced a collaborative
hierarchical caching mechanism with an attempt to max-
imise the overall cache hitting rate. George et al., [11] unified
both goals by utilising a cooperative caching algorithm
with proactive cache updating policy to reduce the delay in
online video access and jointly improve the cache hit ratio.

However, our work differs from previous works in terms
of system model and problem goal. In particular, instead of
being capacity-oriented and aiming to maximise the cache
hit ratio, the goal of our algorithm is to minimise the cost of
request serving given adequate resources in the cloud.

Later, in the offline setting and a cost perspective, Li et
al., [12] established a Markov model and a multiple linear
regression model to assist caching usage prediction and
guide the caching placement. From the theoretical perspec-
tive, Khanafer et al., [13] formulated the computation and
caching cost trade-off as a constrained ski-rental problem
assisted by the first or second moment of the arrival distri-
bution, which outperformed existing approaches in worst-
case competitive ratio. Puttaswamy et al, [14] and Erradi
et al., [15] also tackled the storage cost saving by utilising
a hybrid adaptive storage solution under multiple storage
services, and via a tier-wise object placement algorithm,
respectively. Both methods benefited the cost saving dur-
ing cloud data storage. Wang et al., [6] proposed a 2-
competitive online algorithm that applied an individually-
served manner to handle the incoming requests and utilised
anticipatory caching to maintain the caches of data items
under the content delivery edge network. However, none of
the above works attempted the packable mechanism during
cloud caching.

Recently, Huang et al., [4] introduced the DP Greedy
algorithm that combined an existing dynamic programming
(DP)-based algorithm and a greedy strategy to effectively

cache data items in the cloud environment with packing
being enabled. However, their work was only feasible in
offline settings, leaving the online setting untouched.

All aforementioned methods are either in absence of
packing mechanism when serving data requests at all or
only feasible in offline settings that possess complete knowl-
edge about requests, such as the work in [4]. To the best
of our knowledge, there is still in shortage of cost-effective
packable data caching algorithms working in online set-
tings. Our work instead fills this gap in a realistic and cost-
effective way by incorporating the co-relationships between
data items into an online algorithm via a packing mecha-
nism to serve data requests.

3 PROBLEM FORMULATION

In this section, we describe the problem formulation of the
cost-driven packable data caching problem in details. We
first define some useful concepts that will be used in this
paper, and then give a standard form of the solution to the
problem following the idea proposed in study [2, 4].

3.1 Problem Model

Suppose in a cloud environment, there are k distinct data
items with diverse co-utilisation patterns. The set of data
items are denoted by D = {d1, d2, · · · , dk}, which will be
cached in a fully connected network with m cache servers,
denoted by S = {s1, s2, · · · , sm}. A sequence of data
requests, R = {r1, r2, · · · , rn}, are made to request these
data items, where the tuple ri =< sj , ti, Di > represents
that request ri is made at server sj (sj ∈ S) at time ti for a
data item subset Di. For each request ri, it can either request
a single data item, i.e., Di = {di1}, di1 ⊆ D, or can request
two data items, i.e., Di = {di1, di2}, di1, di2 ∈ D.

When serving a data request, the shared data items
need to be either held locally in the cache of server that
receives the data request, or be replicated and transferred
from another server to the server with the received request
to satisfy the request. After being used, the data will be
destroyed at certain time to achieve minimal caching cost
so that the requests can be served in a cost-efficient manner.

Different from previous works, in this paper we consider
the online setting, i.e., there is no knowledge of where and
when each data request is made and which data item subset
is requested. For simplicity, we assume that there exists at
most one request per time instance as many other previous
studies assumed [2, 7, 3, 4], so we can use ti to represent the
arrival time of the request ri.

As the functionalities of cloud applications become more
sophisticated, it is likely that two correlated data items could
be frequently utilised together (i.e., co-utilised) by requests.
In this circumstance, packing these data items as a package
to serve data requests jointly is both convenient and cost-
effective. We define a discount factor α, (0 < α ≤ 1),
which measures the ratio between cost of serving a request
of two frequent data items in a packed manner, and the cost
of the individually-served non-packing case. Note that the
packing will not be leveraged during caching for the online
case to avoid time-consuming unpacking during single data
requests. On the other hand, for infrequently co-utilised data
items, the packing mechanism will not be applied. Since if
data items are frequently co-utilised, the application that
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requests these data items usually possesses an optimised
way to handle and unpack the package, hence the burden
caused by unpacking is negligible. While for infrequent data
item pairs, the lack of optimised unpacking mechanism and
subsequent single data accesses yield extra cost burdens.
Hence, it is not worth packing infrequent data items. In this
paper, we only consider packages with two data items, but
without loss of generality, the algorithm is convenient to be
extended to multiple data item packing cases.

We also adopt the space-time diagram [4] to clarify the
problem. A feasible schedule (shown in Fig. 1), is a way to
use caching or transferring to get all data requests satisfied
along the timeline, and a standard form of a schedule is
that all transfers occur at the request time instance. The
work [7] confirmed that there exists at least one optimal
schedule which belongs to the standard form. Different
from previous research [2], we consider the multiple data
item caching problem and we take data item’s co-utilisation
into account and enable the packing mechanism, instead
of serving them individually. Besides, our work stands out
from [4] as our proposed algorithm works in the online
setting, which makes no assumption regarding data request
sequence, and provide the corresponding competitive ratio
with its lower bound.

In terms of request satisfaction, since there exists a se-
quence of data requests, we define the request being satis-
fied as the data items in that specific request are satisfied.

Fig. 1. A feasible schedule (bold lines) of a packable caching model (µ =
λ). The data items are initially on server S3. Each vertex and numbers
below it represent at time t a request is asking for data item in <>.
Horizontal lines represent data caching, while green and purple vertical
lines indicate individual and packed data item transferring, respectively.
The dashed lines indicates extra caching made by the system. The red
cross represents cache elimination, while the blue rectangle represents
although the expiration is detected, the data is still kept to prevent data
loss. The cost is C = (1 + 2 + 4.7 + 3)µ+ (3 + 2 ∗ 2 ∗ α)λ.

3.2 Cost Model

We adopt the same model presented in [4] to conduct our
study. A universal caching costs per time unit for each server
is applied, denoted by µ, and the transfer costs between any
pair of servers are also identical, denoted by λ. Suppose
Cp

ij , (1 ⩽ p ⩽ k) represents the cost to serve a data item
dp contained in request rj =< sj , tj , Dj >, i.e., dp ∈ Dj ,
and request ri =< si, ti, Di >, dp ∈ Di, is the most recent
request for data item dp before rj . If rj is the first request
for data dp, ti = 0. We give a formal definition of Cp

ij as
follows:

Cp
ij =

{
(tj − ti)µ+ ϵλ, tj > ti
+∞, Otherwise (1)

where ϵ is a variable with value in {0, 1} to signify how
to treat the transfer cost during the computation of Cp

ij .
Specifically, if the request rj is served by a local data cache
resulted from ri, i.e., si = sj , then ϵ = 0. Otherwise, ϵ = 1,

implying the requested data item dp is first cached from ti
to tj on cache server si, and then transferred from si to sj to
serve request rj . If dp is one of the data item in a request for a
frequent data pair and server si contains the requested data
pair, the corresponding transfer cost λ will have the discount
factor α being applied, i.e., ϵαλ. Note that the cost model is
generalisable to reflect the overheads faced by the algorithm.
Considering that in practice the cost of transferring a unit of
data is fixed, then the cost reduction proportionally reflects
the reduction in terms of data communication overhead.
Similarly, considering that the network condition provided
by modern cloud service providers are relatively stable, then
the communication overhead reduction also proportionally
translates to the decrease of time overhead.

3.3 Problem Goal

To satisfy a data request, data items may need to be either
cached locally to serve the subsequent requests made on this
server or transferred from another cache server that has the
requested data item so that the request could be satisfied. A
transfer operation implies the data item is replicated, then
the copy is transferred and cached in the destination server
and then destroyed in the future for cost saving. Since the
replication cost and deletion cost are always constants, they
can be merged into the transfer cost or the caching cost.
Without loss of accuracy, we assume these cost are free as in
many previous studies [2, 7, 3, 4].

The problem goal is to find an optimal schedule among
many feasible schedules so that the total cost to serve all
these data requests is minimised. We denote Π(i) as all
feasible schedules to satisfy the requests up to ri, ϕ(R) as a
feasible schedule and ϕ∗(R) as the optimal for this n-length
request sequence, i.e., |R| = n. Each schedule ϕ(R) has a
cost cost(ϕ(R)), which is defined as follows:

cost(ϕ(R)) =
∑
ri∈R

cost(ri) =
∑
ri∈R

∑
dp∈Di

cost(dp) (2)

whereby we have the same formal definition of the problem
goal as in [4]:

ϕ∗(R) = argmin
ϕ(R)∈Π(R)

cost(ϕ(R)) (3)

In this paper, we study the online form of this problem
and give an 2/α-competitive online algorithm.

4 AN ONLINE 2/α-COMPETITIVE ALGORITHM

Given that the full information regarding data requests are
usually not available in advance in practice, to make the
algorithm more generalisable, we propose the PackCache
algorithm that can work under an online manner. In this
section, we first describe the workflow and rationale of the
proposed PackCache algorithm, which is a 2/α-competitive
algorithm. Then, we prove the competitive ratio and its
lower bound. We finally analyse the time and space com-
plexity of the PackCache algorithm.

Algorithm 1 The PackCache algorithm

Input: online request in the form of ri =< sj , ti, Di >
Output: the average cost to serve this request sequence, de-

noted by ave cost
1: /* all data items are initially located at cache server s1 */
2: Initialise: c[dk]← 1; E[dk]

j ← 0, 1 ≤ j ≤ m
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3: transfer cost CT ← 0, caching cost CC ← 0
4: if (request ri arrives sj at time ti) then
5: use frequent item miner(ri) to mine frequently co-

utilised data items based on minimum support γ using
request history up to time ti

6: CT ← CT + serve request(ri)
7: end if
8: if (a copy dp expires on sj at ti) then
9: copy expire(dp, sj , ti)

10: end if
11: return average request cost

In the PackCache algorithm, we maintain a global counter
c[dk], which keeps track of the number of alive copies of data
item dk. Without loss of generality, we assume that all data
items are initially cached at server s1 with only one copy, i.e.,
c[dk] = 1. Besides, we also maintain a local expiration time
tracker E[dk]

j which stands for the expiration time of data
item dk on server sj and is initialised to be 0. A previous
request recorder rj<k> is also maintained to record the latest
request of dk on server sj . The initialisation process has been
shown in line 2 - 3 in Algorithm 1.

The PackCache algorithm constitutes 3 components,
namely the FP-Tree-based frequent data itemset miner as shown
in Algorithm 2, the Request serving component as shown in
Algorithm 3 and the Data item copy expiration handler as
shown in Algorithm 4.

Algorithm 2 Function frequent item miner(ri)

Input: an incoming request in the form ri =< sj , ti, Di >
Output: the FreqI , i.e., the frequent data itemsets

1: if (request ri is a double data item request) then
2: add request ri into request history
3: update FP-Tree
4: end if
5: retrieve all data item pairs that have their support greater

than or equal to the minimum support γ to form FreqI
6: return FreqI

As shown in Algorithm 2 and line 5 in Algorithm
1, upon receiving a new data request, the PackCache al-
gorithm utilises FP-Tree to discover frequently co-utilised
data itemsets with a given minimum support γ based on
the request history available till the current time ti. As
indicated in line 1 - 3 in Algorithm 2, only double data
item requests will be added into the request history to guide
the mining process. The advantage of utilising the FP-Tree-
based frequent itemset miner over the Jaccard Similarity-
based one is that the FP-Tree-based frequent itemset miner
performs more stable when data requests come in an online
manner, and hence it will generate less variations [5, 16].

Algorithm 3 Function serve request(ri)

Input: an incoming request in form ri =< sj , ti, Di >
Output: the transfer cost of serving this request

1: transfer cost CT ← 0
2: ∆t← λ

µ

3: if (request ri arrives sj at time ti) then
4: if (request ri contains a single data item di) then
5: if (E[di]

j = 0) then
6: ri served by a transfer from sk with di, k ̸= j;
7: CT ← CT + λ
8: E[di]

j ← ti +∆t
9: c[di]← c[di] + 1

10: else if (E[di]
j ̸= 0) then

11: serve ri by the local copy on sj
12: E[di]

j ← ti +∆t
13: end if
14: rj<i> ← ti
15: else if (request ri contains two data items di1 and di2)

then
16: if (E[dji1] = 0 and E[dji2] = 0) then
17: if (di = (di1, di2) ∈ FreqI) then
18: di1 & di2 are transferred in two ways for

cost minimisation: 1) individual item from any server that
caches a copy; 2) packed items from any server with both.

19: if transferred individually then
20: CT ← CT + 2λ
21: else
22: CT ← CT + 2αλ
23: end if
24: else
25: di1 & di2 trans. them from sk, k ̸= j;
26: CT ← CT + 2λ
27: end if
28: E[dji1], E[dji2]← ti +∆t
29: c[di1]← c[di1] + 1, c[di2]← c[di2] + 1
30: else if (E[dji1] ̸= 0 and E[dji2] ̸= 0) then
31: serve request ri by local copy on sj
32: E[dji1], E[dji2]← ti +∆t
33: else
34: di1 or di2 is missed locally, trans. from sk, k ̸= j;
35: CT ← CT + λ
36: E[dji1], E[dji2]← ti +∆t
37: c[di∗]← c[di∗] + 1, di∗ is the absent data item
38: end if
39: rj<i1>, r

j
<i2> ← ti

40: end if
41: end if
42: return CT

The request serving mechanism of the PackCache algo-
rithm has been shown in Algorithm 3. Upon receiving a
single data item request (line 4 - 14), the request serv-
ing component will transfer the requested data item from
any server sk who possesses an alive copy if the requested
data item is not locally cached on server sj , i.e., E[di]

j = 0.
Tracker E[di]

j , c[di] and the transfer cost CT will be updated
accordingly as shown in line 7 - 9. On the other hand, if
the requested data item is available locally, it will be served
directly without transferring as shown in line 10 - 12.
Finally, tracker rj<i> is updated to reflect the recent request
for the data item.

In the PackCache setting, requests with two data items are
also allowed. The request serving works similarly with the
single data item request case, except in the transfer scenar-
ios. As indicated in line 17 - 23, when both requested
data items are absent, a discounted transfer cost can be ap-
plied if these two data items form an itemset that is frequent,
otherwise they will be served in an individual manner and
the usual transfer cost will be applied as in line 24 -
26. Depending on the length of the idle caching time, the
algorithm will use the most cost-efficient way to perform the
transfer, either transfer these two data items individually, or
transfer them in a packed manner. On the other hand, if
both requested items are cached locally, no extra transfer is
required and the request will be served directly as in line
30 - 32. Similar to the single data item requests, as shown
in line 33 - 37, when any one of the requested data item
is not stored locally, the transfer of the lacked data item is
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done individually, making the discount not applicable. Note
that in this case, as well as the single data item request case,
the PackCache algorithm will only transfer the requested
data item that is locally absent, instead of transferring a data
item package which contains the required data item. Since
in the online setting, complete knowledge about the entire
request sequence is lacked, therefore it may not be worthy to
use a data item package to satisfy a single data item request,
which distinguishes the PackCache algorithm with its offline
counterpart. Finally, tracker r<i> is updated.

Algorithm 4 Function copy expire(dp, sj , ti))

Input: the copy expiration event information
Output: no output will be yielded by this function

1: ∆t← λ
µ

2: if (c[dp] = 1) then
3: E[dp]

j ← ti +∆t
4: else
5: drop the dp copy at sj
6: E[dp]

j ← 0
7: c[dp]← c[dp]− 1
8: end if

For the copy expiration handler, we adopt the mecha-
nism inspired by the anticipatory caching concept. The period
∆t = λ/µ is calculated as shown in line 1 in Algorithm 4
and is also used in Algorithm 3. If the period between the
current time and the time of the latest previous request of
this data item is less than or equal to ∆t, this data item is
worth being cached locally as the caching cost is less than
or equal to the transfer cost incurred by the eviction of this
data item after its latest previous request. When the period
∆t is reached, if this data item has more than one alive
copies, then the local copy will be dropped for caching cost
efficiency as in line 4 - 7 in Algorithm 4. Otherwise, if
the local copy is the only alive copy, then its expiration time
will be extended by another ∆t to prevent data loss as in
line 2 - 3 in Algorithm 4.

4.1 Competitive Analysis

The design of the PackCache algorithm produces the follow-
ing observations:

Observation 1. If c[dk] > 1, i.e., there exists more than one
alive copies of data item dk, then no copy can survive for more
than ∆t on any server sj , j ∈ [1,m].

Observation 2. Since the algorithm has no knowledge about
future requests, in the worst case, it needs to cache dk after
satisfying its request for ∆t period. However, if no subsequent
request of dk comes in ∆t period, the optimal algorithm will not
cache it at all.

Observation 3. Data loss will not happen, hence at any given
time, there is always a copy that can serve the incoming request,
either by local caching or by transferring.

Based on these observations, we give the following the-
orems of the competitive ratio of the PackCache algorithm:

Theorem 1. The PackCache algorithm is 2
α -competitive.

Proof. In the proof, we denote Ci
On PC as the cost of serving

data request ri by the proposed PackCache algorithm, and
denote Ci

OPT as the cost of serving the same data request
by the optimal offline way in the packed setting. We will first
discuss the proof of single data item requests, then extend
the proof to double data item requests.

Considering the following cases for a single data item
request:

Case 1: If ri =< sj , ti, {dk} > is the first request that
arrives at server sj , j ∈ [1,m], then we have Ci

On PC =

µ∆t+ λ = 2λ and Ci
OPT = λ. Hence we have Ci

On PC

Ci
OPT

=

2 ≤ 2
α , given that 0 < α ≤ 1.

Case 2: When the request ri =< sj , ti, {dk} > arrives,
two scenarios should be considered as follows:

Case 2.1: If ti ∈ [rj<k>, r
j
<k>+∆t] and E[dk]

j ̸= 0, which
means there is a local copy ready to serve the request and the
caching period is within ∆t, therefore we have Ci

On PC =

µ∆t ≤ λ, Ci
OPT = µ∆t ≤ λ, hence Ci

On PC

Ci
OPT

= 1 < 2
α .

Case 2.2: If ti > rj<k> + ∆t and E[dk]
j = 0, i.e., there

exists no local cache of the data item to server the request.
Then the transfer will occur, i.e., Ci

On PC = µ∆t + λ = 2λ,
Ci

OPT = λ, hence we have Ci
On PC

Ci
OPT

= 2 ≤ 2
α .

Now lets extend the above proof of single data item
request to double data item request. For the double data
item requests, if these two data items belong to a frequent
itemset, a discount factor 0 < α ≤ 1 can be applied during
data item transferring, otherwise, the discount factor is not
applicable. Firstly, for those double data item requests in
which the two data items cannot form a frequent itemset,
they will be served in a separated manner and the discount
factor is not applicable. Therefore, the cost in this case is
twice in the analysis of a single data item request. The
constant 2 will be cancelled out for both the PackCache
and the optimal algorithm and hence the competitive ratio
result remains unchanged. On the other hand, for those
double data item requests in which the two data items can
form a frequent itemset, the result of Case 2.1 will remain
unchanged. In that case, the request is served using local
cached copy and hence the discount factor is not involved
and the result is not affected.

For Case 1, it needs to be reconsidered under the double
data item request:

Case 1’: We have Ci
On PC = 2µ∆t + 2λ = 4λ. On the

other hand, Ci
OPT = 2αλ. Hence, Ci

On PC

Ci
OPT

= 2
α .

And for Case 2.2, it also needs to be reconsidered in two
scenarios as follows:

Case 2.2’-1: If neither of these two requested data item
has available local cache copy, i.e., E[dk1]

j = E[dk2]
j = 0.

Then, we have Ci
On PC = 2µ∆t+ 2λ = 4λ, while Ci

OPT =

2αλ. Hence, we have Ci
On PC

Ci
OPT

= 2
α .

Case 2.2’-2: If only one of the requested data item is
absent locally, then we only need to transfer that data item
individually. Hence, we have Ci

On PC = µ∆t + λ = 2λ,
while Ci

OPT = λ. Therefore, we have Ci
On PC

Ci
OPT

= 2 ≤ 2
α ,

given that 0 < α ≤ 1.
Since the Ci

On PC is the cost of serving request ri,
same for Ci

OPT which is the cost of the corresponding
optimal algorithm, therefore, for the entire request sequence
R, |R| = n,

CR
On PC

CR
OPT

=

∑
1≤i≤n C

i
On PC∑

1≤i≤n C
i
OPT

(4)

Hence, we can conclude the theorem with the following
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result:

lim
n→+∞

CR
On PC

CR
OPT

=
2

α
(5)

The following theorem shows that there does not exist
any deterministic online algorithm that can yield a better
performance than 2

α× optimal result, implying our algo-
rithm is tight.

Theorem 2. The competitive ratio of the online packable caching
problem is lower bounded by 2

α .

Proof. Without loss of generality, we establish a special
instance with two data items in which both λ and µ are set
to 1, and thus ∆t is 1. Initially, at least one server has both
data items, and at least one server has each single data item.
We define li to be length of local caching after satisfying
request ri. As mentioned in the previous proof, 2/α will
only appear in Case 1 and 2.2’-1, where both requested data
items are absent locally. Hence, we only focus on the data
pair request in which both items are absent.

We prove the theorem by reduction. Initially, a request
r1 =< si, 0, {d1, d2} > arrives, both data items are absent
and hence the request will be satisfied by a transfer. Then,
the local caching length l1 will have the following two cases:

Case 1.1: If l1 = 1, then there is no subsequent requests
comes after r1, which yields A

OPT = 2+2l1
2α = 2

α . l1 > 1 will
never hold since the copy will expire.

Case 1.2: If l1 < 1, it means there is a request comes in
ϵ time, ϵ < 1. Similarly, we have l2 to be the caching length
after satisfying r2, and hence it leads to two cases similar
with the above:

Case 2.1: If l2 = 1, then there is no subsequent requests
comes after r2, which yields A

OPT = 2+2(l1+l2)
2α+2min(α,l1)

< 2
α .

Case 2.2: If l2 < 1, it repeats Case 1.2. We keep receiving
request rk. Assume upon request rk−1, Ak−1

OPTk−1 ≤ 2
α holds,

we have the following:
Case k: We have Ak

OPTk = 2+2lk
α+2min(α,lk)

< 2
α and it holds

when lk ≤ 1 so we omit Case k.2. Hence, we conclude that
2/α is a lower bound of the competitive ratio, implying that
no deterministic algorithm can do better than this.

4.2 Complexity Analysis
The implementation of the algorithm follows the work-

flow described in Algorithm 1 - 4 in Section 4. In terms
of the space complexity, maintaining E[dk]

j costs the high-
est space consumption among all tracker variables and is
O(mn), while constructing the FP-Tree has a space com-
plexity O(n2). Given that the number of servers m is far
less than the number of requests n, therefore, the overall
space complexity of the PackCache algorithm is O(n2).

As for the time complexity, when serving each incoming
data request, manipulating E[dk]

j , c[dk] and rj<i> can be
done using O(1) time with efficient implementation. Hence,
serving request in general remains in constant time com-
plexity, which is highly efficient. Despite that constructing
the FP-Tree, handling expired copies and calculating the
caching cost may cause some overhead, fortunately, all
these operations can be processed by background daemons
running in parallel with the request serving process. Hence,
they will not impair the time complexity of request serving.

5 PERFORMANCE STUDIES

To verify the performance of our algorithm in practice,
extensive experiments are conducted. We design a solver in
Python, which effectively implements our algorithm. Follow
[4], the experiment data comes from the taxi trace data from
City of Shenzhen in China. The territory of city is partitioned
into 50 parts, each maintains a cache server to serve the user
requests of taxis, which are regarded as shared data items.
For instance, at time ti, server in region sj receives a request
of two taxis will be used as a request in our experiment. The
dataset contains various request pairs with relatively high
Jaccard Similarity. According to the research results [4], the
trace of the taxi can be roughly seen as the trace on how
data are requested from different servers.

The algorithm is characterised by several parameters,
which include number of data items k, number of caching
nodes m, number of requests n, the discount factor α, the
minimum support threshold γ for the FP-Tree frequent data
itemset mining, the caching cost µ and the transfer cost λ.
To concentrate our study on the factors we concerned about,
we deliberately ignore some other factors that may influence
the algorithm, such as CPU power, network condition and
bandwidth of the network, etc. On the other hand, we take
the average cost as the major performance metric since
many other performances can be reflected from it such as
the network bandwidth occupancy rate.

During experiments, 10 taxis are randomly selected, each
acts as a distinct data item (d1, d2, · · · , d10) as this value can
be well handled and without loss of generality to reflect
general case. We partition the city into 50 parts, each having
a caching server, and set the discount factor α = 0.8. The
default transfer cost λ and caching cost µ are all set to
be 3 to balance between transferring and caching. We set
the minimum support γ = 0.01 based on our experience
on research of human mobility behaviors in metropolitan
city [4]. Finally, several factors are varied to testify the
effectiveness and robustness of the PackCache algorithm.

When evaluating the PackCache algorithm, we compare it
with the algorithm that individually serves packed requests
without the data packing mechanism to demonstrate the
effectiveness of the packable PackCache algorithm. Besides,
we also compare with the offline counterpart to show that
although the performance is lower bounded by 2/α, the
PackCache algorithm usually performs better than the the-
oretical lower bound.

5.1 Impact of Ratio ρ = λ/µ

When evaluating the effectiveness and robustness of the
PackCache algorithm with different ρ ratios, we set λ+µ = 6
intentionally. The experimental results of the transfer cost is
illustrated in Fig. 2(a).

According to Fig. 2(a), the average transfer cost increases
as the ratio ρ increases. It is natural to observe because as
the ratio ρ increases, the transfer cost λ is gradually empha-
sised while the caching cost µ is gradually declined. Under
all ρ settings ranging between 0.2 and 5.0, the PackCache
algorithm outperforms its individually-served counterpart,
which demonstrates the superiority and robustness of the
PackCache algorithm. For instance, when ρ is set to 1, the
cost reduction achieved by the PackCache is around 4.6%.
Besides, we can observe that the cost does not increase in
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Fig. 2. The average transfer cost of PackCache algorithm and its individually-served counterpart under (a1) & (a2) different ρ ratios, (b) different
minimum support γ, (c) different discount factor α, (d) different number of cache servers and (e) different number of data items.

a linear trend as the ρ ratio raises. The reason is that when
the ratio ρ raises, the transfer cost becomes higher than the
caching cost, which gradually encourages local caching of
data items instead of transferring them to serve the requests.
Data items will be cached locally for longer periods, the
local caching becomes less frequent to expire, leading to less
transfers being performed.
5.2 Impact of Minimum Support γ

The effectiveness of the PackCache algorithm under dif-
ferent minimum support γ during FP-Tree construction has
been illustrated in Fig. 2(b). The minimum support value
controls the threshold of whether two data items will be
considered frequent or not. The higher the γ is, the more
frequently should both data items be co-utilised in order to
be considered as frequent. A higher minimum support γ
will discourage the discounted packing from being applied
and vice versa. Hence, by observing Fig. 2(b), we notice that
the average transfer cost of PackCache algorithm increases
as the minimum support raises. The average transfer cost
even approaching its individually-served counterpart when
the minimum support becomes relatively large, i.e., 0.1 in
this case. This is natural to observe since when the min-
imum support γ is relatively small, more co-utilised data
items will be considered as being frequent and hence the
benefit brought by the data packing can be fully exploited.
While the minimum support γ becomes higher, less data co-
utilisation will be considered to be frequent and hence the
data packing benefit gradually diminishes. Therefore, the
performance of the PackCache algorithm will approach its
individual counterpart as the minimum support increases.

Specifically, when the minimum support γ is set to
the default value 0.01, the cost reduction achieved by the
PackCache algorithm is around 3.8%. Furthermore, under all
minimum support settings except the extremely high set-
ting, a significant cost reduction has been observed, which
demonstrates the effectiveness of the PackCache algorithm
and its robustness in terms of varied γ settings.
5.3 Impact of Discount Factor α

The performance of PackCache algorithm under differ-
ent discount factor α is shown in Fig. 2(c). The discount
factor α controls the benefit that the packing mechanism
can bring. The higher the discount factor, the less benefit
when utilising the packing mechanism. Hence, as observed
from Fig. 2(c), the average transfer cost increases linearly
as the discount factor α raises. Despite the raise of the
average transfer cost, the PackCache algorithm still outper-
forms its individual counterpart by a large margin under all
α settings. For instance, when α is 0.6, the cost reduction
achieved by the PackCache algorithm is 10.7%. Even for the
highest setting 0.8, which is the default value we utilised

following 5, the cost reduction is still around 4.6%. Hence,
the results demonstrates the excellent performance and ro-
bustness of the PackCache algorithm.
5.4 Scalability of the Algorithm

To testify the scalability of the PackCache algorithm, three
variables are adjusted, i.e., number of requests, number of
cache servers, and number of data items. The evaluation
results are presented in Fig. 3, 2(d) - 2(e), respectively.
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Fig. 3. The total and average transfer cost of the PackCache algorithm
and its individual counterpart when serving different number of requests.

Scalability (Number of requests): From Fig. 3(a), it is natural
that the total transfer cost of request serving rises when the
number of requests increases from 200 to 10000. The total
transfer cost reaches a plateau when the number of requests
becomes even larger. The reason is that when the number of
requests becomes larger, the requests will come in a denser
manner, making the cached copies hardly expire. Hence, it
significantly reduces the need of copy transfer, and hence it
also results in the transfer cost stops growing.

In terms of average request transfer cost, a clear decreas-
ing trend is observed from Fig. 3(b) and (c). For instance,
when the number of requests is 500 and 2000, the Pack-
Cache algorithm achieves cost reduction of 4.7% and 4.2%,
respectively, which verifies the scalability of the PackCache
algorithm when serving varied number of requests.

Scalability (Number of cache servers): The performance
of the PackCache algorithm when working under different
number of cache servers has been presented in Fig. 2(d). The
average transfer cost increases linearly when the number
of cache servers raises. The linear trend indicates that the
PackCache algorithm scales stably when the number of cache
servers varies, demonstrating excellent scalability in terms
of different number of cache servers. Under different num-
ber of cache servers, the PackCache algorithm achieves a cost
drop around 4.3%, which further verifies the effectiveness
of the PackCache algorithm.

Scalability (Number of data items): Finally, the PackCache
algorithm is evaluated under different number of shared
data items. From Fig. 2(e), we can observe a relatively stable
increasing trend of the average transfer cost when the num-
ber of data items increases. Under all settings, the PackCache
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algorithm constantly achieves superior performance. More
specifically, cost saving of 5.7%, 5.1% and 3.8% are achieved
when the number of data item is set to be 2, 5 and 10,
respectively. The reason why the cost reduction gradually
decreases is that as the number of data items increases,
more double data item pairs can be formed, hence, less pairs
become frequent and hence the packing mechanism is less
frequently applied. Therefore, as the number of data items
keeps growing, the performance of the PackCache algorithm
will gradually approach its individually-served counterpart,
as the benefit brought by the packing mechanism will
gradually diminish. However, when the number of data
items are relatively small, we can observe significant cost
reduction, which verifies the effectiveness and scalability of
the PackCache algorithm.

5.5 Comparison with Offline Algorithm

To demonstrate the effectiveness, we also compare the
PackCache algorithm with its offline counterpart. The cost
yielded by the PackCache algorithm is 1.04, 1.41, and 1.31
times higher than its offline counterpart when ρ varies
between 0.5 and 2. When α varies from 0.6 to 0.8, the cost
is 1.13 and 1.41 times higher than the offline version. The
PackCache achieves costs that are 1.04, 1.27 and 1.41 times
higher than its offline counterpart in settings with 10, 30 and
50 servers, and are 1.12 and 1.41 times higher in settings
with 5 and 10 data items. Finally, 1.5 and 1.41 times higher
cost are produced when the number of requests varied from
500 to 1000. As we can observe, although the performance
of PackCache is lower bounded by 2/α (1.6 under default
α = 0.8), in various settings, this theoretical lower bound is
usually not reached, which demonstrates the effectiveness
of the PackCache algorithm.

5.6 Performance under Real Cost Model
We use the real service prices to demonstrate that PackCache
algorithm can achieve a significant cost saving under real
deployment. Google Cloud charges $0.04 and $0.08 for
caching and transferring a GB of data. We suppose the
algorithm daily serves 1000 requests for total 1000GB of
data items. Given a reasonable range of discount factor
between 0.6 and 0.9 depending on the selected compres-
sion technique, we use α of 0.6 and 0.8 as representative
scenarios. The system can yield a yearly cost saving of
$1306.7 out of $11468 and $449 out of $12002, which is
approximately equivalent to reducing 21778 and 7483 GB
of data being handled, respectively. Hence, the PackCache
algorithm is beneficial in real settings.

6 CONCLUSION

In this paper, we studied a data caching problem in the
cloud with cost minimisation as the goal. Given that serv-
ing data requests in a packable manner is usually more
cost effective than in its individual counterpart (i.e., non-
packing), we are among the first to propose a time-space
efficient PackCache algorithm, which leverages FP-Tree to
mine frequently co-utilised data in an online setting and
exploits the concept of anticipatory caching for service cost
reduction. We showed the algorithm is 2/α competitive
with respect to a homogeneous cost mode, reaching the
lower bound of the competitive ratio for any deterministic

online algorithm on this problem. Finally, we evaluated the
performance of the algorithm via experimental studies to
show its actual cost-effectiveness and scalability in practice.
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